China factory Advanced Linear Guide Bearing Lead Screw Ball Screw System for Precision Engineering

Product Description

Company Profile

UP GOLD Automation Technology Co., LTD., independent brand, NYZ and UP. The main products are linear guide rail, slider, ball screw, linear optical shaft, linear bearing, machine tool spindle special P4 high precision bearings and accessories, with advanced production equipment and testing instruments to ensure the accuracy of each product. Precision products will provide higher value to the equipment. The company promises to sell each product, warranty period of 24 months, 24 hours after-sales service. Provide professional OEM cooperation model. At the same time, the company agents international first-line brands HIWIN, TBI, NSK,THK. Sufficient resources to ensure every customer needs.

Our Advantages

*Two-year warranty, replace instead of repair        *12 Months Warranty
*Fast Delivery                                                         *24 hours on line service
*Professional Team

Product Description

Ball Screw
Ball screw is made of screw, nut and ball.
The function is to turn the rotary motion into liner motion, which is a further extension and development of ball screw.
The significance of this development is to move into a rolling bearing from sliding action; With little friction, ball screws are widely used in various industrial equipment and precision instruments.

Product Name Ball Screw
Nut Number Single
Nut Type Circulator
Dia 12, 16, 20, 25, 32, 40, 50, 63, 80mm
Lead 5, 6, 8, 10, 16, 20, 25, 32, 40mm
Accuracy C3, C5, C7, C10
Nut style Single or double
End processing According to customer’s drawing
Delivery time 15days
Feature High speed, low noise
Production Capacity 50000 PCS/ Month
OEM/ODM Availability YES

  Application:
1.Medical industry
2.Lithium battery industry
3.Solar photovoltaic industry
4.Semi conductor industry
5.General industry machinery
6.Machine tool
7.Parking system
8.High-speed rail and aviation transportation equipment
9.3C industry etc.

 

Customer Comment

Packaging and Logistics

Ziploc bag+Carton/Wooden+Pallet

  

FAQ

Q: What is the producing process?
A: Production process including raw material cutting, machine processing,grinding, accessories cleaning, assemble, cleaning, oil coating,cover pressing, testing, package.
Q: How to control the products quality?
A: Combining advanced equipment and strict management, we provide high standard and quality bearings for our customers all over the world.
Q: What is the transportation?
A: If small quantity, we suggest to send by express, such as DHL, UPS,TNT FEDEX. If large amount, by air or sea shipping.
Q: How about the shipping charge?
A: We will be free of domestic shipping charge from your freight forwarder in China.
Q: Can you provide OEM service?
A: Yes, we provide OEM service. Which means size, quantity, design,packing solution, etc will depend on your requests; and your logo will be customized on our products.
Q: Could you tell me the delivery time of your goods?
A: Generally it is 3-5 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to the quantity.
Q: What about the packaging of your products?
A: Normally we use standard commercial package, we also have our own brand packing or customized package as per customers’ requests.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Precision: C3, C5, C7, C10
Screw Diameter: Customize
Flange: With Flange
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

lead screw

How do lead screws contribute to the efficiency and accuracy of linear motion systems?

Lead screws play a crucial role in enhancing the efficiency and accuracy of linear motion systems. Here’s how they contribute to these aspects:

Efficiency:

Lead screws can contribute to the efficiency of linear motion systems in the following ways:

  • Mechanical Efficiency: Lead screws can achieve high mechanical efficiency in converting rotary motion into linear motion. The efficiency depends on factors such as the thread design, lubrication, and preload. When properly designed and lubricated, lead screws can operate with minimal friction and energy loss, ensuring efficient power transmission. This efficiency allows for effective utilization of the input power and reduces energy consumption.
  • Self-Locking Capability: Lead screws have a self-locking characteristic, which means they can hold their position without the need for additional locking mechanisms. The friction between the mating threads helps prevent back-driving and maintains the position of the load. This self-locking property eliminates the need for continuous power input to hold the position, improving overall efficiency.
  • No Energy Consumption at Rest: When the lead screw is not in motion, it does not consume any energy. This is advantageous in applications where the load needs to be held in position for extended periods. The self-locking feature of lead screws ensures that the load remains stationary without energy input, contributing to energy efficiency.

Accuracy:

Lead screws contribute to the accuracy of linear motion systems in the following ways:

  • Precise Positioning: Lead screws allow for precise positioning of components or loads. The thread pitch and design, combined with the rotational input, enable accurate and controlled linear movement. This precision is crucial in applications that require accurate alignment, spacing, or adjustment of components.
  • Repeatability: Lead screws provide excellent repeatability in linear motion. Once a position is established, lead screws can reliably return to the same position repeatedly. This repeatability is critical in applications where consistent and repeatable motion is required, such as in CNC machines or automated systems.
  • Low Backlash: Backlash refers to the axial movement or play between the screw and nut when changing direction. Lead screws can be designed to minimize backlash, resulting in more accurate positioning and reduced lost motion. Low backlash is particularly important in applications that demand precise positioning, such as machining operations or optical systems.
  • Elimination of Drift: Lead screws help eliminate drift or movement over time. Once a position is set, the self-locking property of lead screws ensures that the load remains stationary without any gradual drift or positional changes. This stability is beneficial in applications where maintaining a fixed position is critical, such as in inspection systems or medical equipment.

Overall, lead screws provide efficient power transmission, self-locking capability, precise positioning, repeatability, and low backlash, all of which contribute to the efficiency and accuracy of linear motion systems. These characteristics make lead screws suitable for a wide range of applications where controlled and reliable linear motion is required.

lead screw

Can you provide insights into the importance of proper lead screw installation and alignment?

Proper lead screw installation and alignment are crucial for ensuring the optimal performance, longevity, and reliability of lead screw systems. The installation and alignment process directly affects the system’s accuracy, efficiency, and overall functionality. Here are some key insights into the importance of proper lead screw installation and alignment:

  1. Accuracy and Precision: Proper installation and alignment are essential for achieving accurate and precise linear motion. Misalignment or incorrect installation can introduce angular errors, axial misalignment, or parallelism issues, leading to positioning errors and reduced system accuracy. By following the manufacturer’s guidelines and using appropriate alignment tools, the lead screw can be installed in a way that minimizes misalignment and ensures precise movement and positioning.
  2. Load Distribution: Correct alignment during installation helps distribute the load evenly along the length of the lead screw. Proper alignment ensures that the load is shared uniformly between the screw and the nut, preventing excessive stress on specific areas. Improved load distribution reduces the risk of premature wear, deformation, or failure of the lead screw and enhances the overall durability and load-carrying capacity of the system.
  3. Backlash and Efficiency: Proper installation and alignment contribute to minimizing backlash in lead screw systems. Backlash, which refers to the clearance between the screw and nut, can negatively impact system performance, precision, and efficiency. Misalignment can exacerbate backlash issues, resulting in reduced repeatability and accuracy. By aligning the lead screw correctly, the backlash can be minimized, improving system efficiency and eliminating potential sources of error.
  4. Reduced Friction and Wear: Accurate installation and alignment help reduce friction and wear between the lead screw and nut. Misalignment can cause the screw and nut to rub against each other unevenly, leading to increased friction, accelerated wear, and reduced system lifespan. Proper alignment ensures that the mating surfaces are in optimal contact, minimizing friction and wear, and improving the overall efficiency and longevity of the lead screw system.
  5. System Stability and Vibration: Proper installation and alignment contribute to system stability and reduced vibration. Misalignment can introduce vibrations, resonances, or oscillations in the lead screw system, affecting the overall performance and potentially causing excessive noise or system instability. By aligning the lead screw correctly, the system’s natural frequencies can be maintained within acceptable limits, improving stability, reducing vibrations, and enhancing the system’s overall operation.
  6. Maintenance and Service: Proper installation and alignment simplify maintenance and service procedures. When lead screws are installed and aligned accurately, routine maintenance tasks such as lubrication, inspection, or component replacement can be performed more efficiently. Access to critical components is improved, and troubleshooting potential issues becomes easier, reducing downtime and enhancing the overall serviceability of the lead screw system.

In conclusion, proper lead screw installation and alignment are of utmost importance for achieving optimal performance, accuracy, efficiency, and durability of lead screw systems. Accurate alignment minimizes positioning errors, improves load distribution, reduces backlash and friction, enhances system stability, and simplifies maintenance procedures. By following manufacturer guidelines and utilizing appropriate alignment techniques, the benefits of proper installation and alignment can be realized, ensuring the long-term reliability and performance of lead screw systems.

lead screw

Are there specific advantages to using lead screws over other linear motion systems?

Yes, there are specific advantages to using lead screws over other linear motion systems. Here are some of the advantages associated with lead screws:

  • Precision and Accuracy: Lead screws offer precise and accurate linear motion control. The thread design and pitch allow for precise positioning and movement of components, making them suitable for applications that require high levels of accuracy and repeatability.
  • Cost-Effectiveness: Lead screws are often more cost-effective compared to other linear motion systems, such as ball screws or linear actuators. They provide a reliable and efficient solution for converting rotary motion into linear motion at a relatively lower cost, making them a popular choice for many applications.
  • High Load Capacity: Lead screws are capable of handling significant axial loads and torque. The thread engagement between the screw and nut distributes the load over a larger surface area, allowing lead screws to support and transfer substantial loads. This makes them suitable for applications that require heavy-duty performance and load-carrying capabilities.
  • Self-Locking: Lead screws have a self-locking characteristic, which means they can hold their position without the need for additional locking mechanisms. The friction between the mating threads helps prevent back-driving and maintains the position of the load, providing stability and safety in applications where holding the position is critical.
  • Simple Design and Installation: Lead screws have a relatively simple design, consisting of a screw and a nut. This simplicity makes them easier to install and maintain compared to more complex linear motion systems. Additionally, the straightforward design allows for customization and modification to meet specific application requirements.
  • Efficiency: Lead screws can achieve high mechanical efficiency in converting rotary motion to linear motion. The efficiency depends on factors such as the thread design, lubrication, and preload. With proper design and lubrication, lead screws can operate with minimal friction and energy loss, ensuring efficient power transmission.
  • Versatility: Lead screws can be used in a wide range of applications across various industries. They are suitable for applications that require linear motion, precise positioning, or adjustment of components. Lead screws find applications in industries such as manufacturing, automation, robotics, aerospace, medical, and more.

These advantages make lead screws a popular choice in many applications where precise linear motion control, cost-effectiveness, high load capacity, and simplicity are essential. However, it’s important to consider specific application requirements and factors such as speed, accuracy, duty cycle, and environmental conditions when selecting the appropriate linear motion system.

China factory Advanced Linear Guide Bearing Lead Screw Ball Screw System for Precision Engineering  China factory Advanced Linear Guide Bearing Lead Screw Ball Screw System for Precision Engineering
editor by Dream 2024-04-26